首页> 外文OA文献 >Improved Coresets for Kernel Density Estimates
【2h】

Improved Coresets for Kernel Density Estimates

机译:用于核密度估计的改进的核心集

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the construction of coresets for kernel density estimates. That iswe show how to approximate the kernel density estimate described by a largepoint set with another kernel density estimate with a much smaller point set.For characteristic kernels (including Gaussian and Laplace kernels), ourapproximation preserves the $L_\infty$ error between kernel density estimateswithin error $\epsilon$, with coreset size $2/\epsilon^2$, but no other aspectsof the data, including the dimension, the diameter of the point set, or thebandwidth of the kernel common to other approximations. When the dimension isunrestricted, we show this bound is tight for these kernels as well as a muchbroader set. This work provides a careful analysis of the iterative Frank-Wolfe algorithmadapted to this context, an algorithm called \emph{kernel herding}. Thisanalysis unites a broad line of work that spans statistics, machine learning,and geometry. When the dimension $d$ is constant, we demonstrate much tighter bounds on thesize of the coreset specifically for Gaussian kernels, showing that it isbounded by the size of the coreset for axis-aligned rectangles. Currently thebest known constructive bound is $O(\frac{1}{\epsilon} \log^d\frac{1}{\epsilon})$, and non-constructively, this can be improved by$\sqrt{\log \frac{1}{\epsilon}}$. This improves the best constant dimensionbounds polynomially for $d \geq 3$.
机译:我们研究用于核密度估计的核集的构建。这就是我们展示了如何用大点集描述的内核密度估计值与另一个更小点集的内核密度估计值近似。对于特征内核(包括高斯和拉普拉斯内核),我们的近似值保留了内核密度之间的$ L_ \ infty $误差在误差$ \ epsilon $中进行估计,核心集大小为$ 2 / \ epsilon ^ 2 $,但没有其他方面的数据,包括尺寸,点集的直径或其他近似值所共有的内核带宽。当维度不受限制时,我们显示出对于这些内核以及更广泛的集合而言,该边界是紧密的。这项工作对适用于这种情况的迭代Frank-Wolfe算法(称为\ emph {kernel herding}的算法)进行了仔细的分析。该分析将跨越统计,机器学习和几何的广泛工作组合在一起。当维数$ d $恒定时,我们证明了专用于高斯核的核集大小有更严格的界限,表明它受到轴对齐矩形的核集大小的限制。当前,最已知的构造边界是$ O(\ frac {1} {\ epsilon} \ log ^ d \ frac {1} {\ epsilon})$,并且可以用$ \ sqrt {\ log \ frac {1} {\ epsilon}} $。多项式可以最佳地改善$ d \ geq 3 $的最佳恒定尺寸范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号